Boundary modulus of continuity and quasiconformal mappings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distortion of quasiconformal mappings with identity boundary values

Teichmüller’s classical mapping problem for plane domains concerns finding a lower bound for the maximal dilatation of a quasiconformal homeomorphism which holds the boundary pointwise fixed, maps the domain onto itself, and maps a given point of the domain to another given point of the domain. For a domain D ⊂ Rn , n ≥ 2 , we consider the class of all Kquasiconformal maps of D onto itself with...

متن کامل

Convex functions and quasiconformal mappings

Continuing our investigation of quasiconformal mappings with convex potentials, we obtain a new characterization of quasiuniformly convex functions and improve our earlier results on the existence of quasiconformal mappings with prescribed sets of singularities.

متن کامل

Quasiconformal Mappings in Space

U' denotes the image of U, the disk | s — So| and maps the infinitesimal circles | z — zo\ = e onto infinitesimal ellipses; H(z0) gives the ratio of the major to minor axes and J(zo) is the absolute value of the Jacobian. Suppose next that w(z) is continuously difîerentiable with J(z)>...

متن کامل

Quasiconformal Geometry of Monotone Mappings

This paper concerns a class of monotone mappings in a Hilbert space that can be viewed as a nonlinear version of the class of positive invertible operators. Such mappings are proved to be open, locally Hölder continuous, and quasisymmetric. They arise naturally from the Beurling-Ahlfors extension and from Brenier’s polar factorization, and find applications in the geometry of metric spaces and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Academiae Scientiarum Fennicae Mathematica

سال: 2012

ISSN: 1239-629X,1798-2383

DOI: 10.5186/aasfm.2012.3718